Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1.
Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth’s surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system.
> Engineers and Technicians Install Protective Shell on NASA’s Orion Spacecraft
Image Credit: NASA/Dimitri Gerondidakis

The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA’s Spitzer Space Telescope and Chandra X-Ray Observatory, and the European Space Agency’s XMM-Newton.
The bubbly cloud is an irregular shock wave, generated by a supernova that would have been witnessed on Earth 3,700 years ago. The remnant itself, called Puppis A, is around 7,000 light-years away, and the shock wave is about 10 light-years across.
The pastel hues in this image reveal that the infrared and X-ray structures trace each other closely. Warm dust particles are responsible for most of the infrared light wavelengths, assigned red and green colors in this view. Material heated by the supernova’s shock wave emits X-rays, which are colored blue. Regions where the infrared and X-ray emissions blend together take on brighter, more pastel tones.
The shock wave appears to light up as it slams into surrounding clouds of dust and gas that fill the interstellar space in this region.
From the infrared glow, astronomers have found a total quantity of dust in the region equal to about a quarter of the mass of our sun. Data collected from Spitzer’s infrared spectrograph reveal how the shock wave is breaking apart the fragile dust grains that fill the surrounding space.
Supernova explosions forge the heavy elements that can provide the raw material from which future generations of stars and planets will form. Studying how supernova remnants expand into the galaxy and interact with other material provides critical clues into our own origins.
Infrared data from Spitzer’s multiband imaging photometer (MIPS) at wavelengths of 24 and 70 microns are rendered in green and red. X-ray data from XMM-Newton spanning an energy range of 0.3 to 8 kiloelectron volts are shown in blue.

Retreat of Yakutat Glacier

August 23, 2014

Located in the Brabazon Range of southeastern Alaska, Yakutat Glacier is one of the fastest retreating glaciers in the world. It is the primary outlet for the 810-square kilometer (310-square mile) Yakutat ice field, which drains into Harlequin Lake and, ultimately, the Gulf of Alaska.
The Operational Land Imager on the Landsat 8 satellite captured this image of the glacier and lake on Aug. 13, 2013. Snow and ice appear white and forests are green. The brown streaks on the glaciers are lateral and medial moraines.
Over the past 26 years, the glacier’s terminus has retreated more than 5 kilometers (3 miles). What is causing the rapid retreat? University of Alaska glaciologist Martin Truffer and colleagues pointed to a number of factors in their 2013 study published in the Journal of Glaciology. The chief cause is the long-term contraction of the Yakutat Ice Field, which has been shrinking since the height of the Little Ice Age.
Once part of a much larger ice field, Yakutat has been contracting for hundreds of years. As other nearby glaciers retreated, Yakutat ice field was cut off from higher-elevation areas that once supplied a steady flow of ice from the north. With that flow cut off, there simply is not enough snow falling over the low-elevation Yakutat ice field to prevent it from retreating.
Beyond this natural change, human-caused global warming has hastened the speed of the retreat. Between 1948–2000, mean annual temperatures in Yakutat increased by 1.38° Celsius (2.48° Fahrenheit). Between 2000 and 2010, they rose by another 0.48°C (0.86°F). The warmer temperatures encourage melting and sublimation at all ice surfaces exposed to the air.
In the past few years, the breakdown of a long, floating ice tongue has triggered especially dramatic changes in the terminus of Yakutat glacier. For many years, Yakutat’s two main tributaries merged and formed a 5-kilometer (3-mile) calving face that extended far into Harlequin Lake. In the past decade, satellites observed a rapid terminus retreat and the breakup of the ice tongue in 2010. As a result, the calving front divided into two sections, with one running east-west and another running north-south. 
> More information and annotated images
Image Credit: NASA Earth Observatory image by Robert Simmon, using Landsat data from the U.S. Geological Survey
Caption: Adam Voiland

Testing Electric Propulsion

August 23, 2014

On Aug. 19, National Aviation Day, a lot of people are reflecting on how far aviation has come in the last century. Could this be the future – a plane with many electric motors that can hover like a helicopter and fly like a plane, and that could revolutionize air travel?
Engineers at NASA’s Langley Research Center in Hampton, Va., are studying the concept with models such as the unmanned aerial system GL-10 Greased Lightning. The GL-10, which has a 10-foot wingspan, recently flew successfully while tethered. Free-flight tests are planned in the fall of 2014.
This research has helped lead to NASA Aeronautics Research Mission Directorate efforts to better understand the potential of electric propulsion across all types, sizes and missions for aviation.
Image Credit: NASA Langley/David C. Bowman

The pale rocks in the foreground of this fisheye image from NASA’s Curiosity Mars rover include the “Bonanza King” target under consideration to become the fourth rock drilled by the Mars Science Laboratory mission.  No previous mission has collected sample material from the interior of rocks on Mars. Curiosity delivers the drilled rock powder into analytical laboratory instruments inside the rover.
Curiosity’s front Hazard Avoidance Camera (Hazcam), which has a very wide-angle lens, recorded this view on Aug. 14, 2014, during the 719th Martian day, or sol, of the rover’s work on Mars.  The view faces southward, looking down a ramp at the northeastern end of sandy-floored “Hidden Valley.” Wheel tracks show where Curiosity drove into the valley, and back out again, earlier in August 2014.  The largest of the individual flat rocks in the foreground are a few inches (several centimeters) across.  For scale, the rover’s left front wheel, visible at left, is 20 inches (0.5 meter) in diameter.
A map showing Hidden Valley is at .
NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project for NASA’s Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover and the rover’s Navcam.
Image Credit: NASA/JPL-Caltech

ISS040-E-090540 (9 Aug. 2014) — One of the Expedition 40 crew members aboard the International Space Station photographed this nighttime image showing city lights in at least half a dozen southern states from some 225 miles above the home planet. Lights from areas in the Gulf Coast states of Texas, Louisiana, Mississippi and Alabama, as well as some of the states that border them on the north, are visible.
Image Credit: NASA

Supernova SN 2014J Explodes

August 23, 2014

New data from NASA’s Chandra X-ray Observatory has provided stringent constraints on the environment around one of the closest supernovas discovered in decades. The Chandra results provide insight into possible cause of the explosion, as described in our press release.
On January 21, 2014, astronomers witnessed a supernova soon after it exploded in the Messier 82, or M82, galaxy. Telescopes across the globe and in space turned their attention to study this newly exploded star, including Chandra.  Astronomers determined that this supernova, dubbed SN 2014J, belongs to a class of explosions called “Type Ia” supernovas. These supernovas are used as cosmic distance-markers and played a key role in the discovery of the Universe’s accelerated expansion, which has been attributed to the effects of dark energy.  Scientists think that all Type Ia supernovas involve the detonation of a white dwarf. One important question is whether the fuse on the explosion is lit when the white dwarf pulls too much material from a companion star like the Sun, or when two white dwarf stars merge. 
This image contains Chandra data, where low, medium, and high-energy X-rays are red, green, and blue respectively. The boxes in the bottom of the image show close-up views of the region around the supernova in data taken prior to the explosion (left), as well as data gathered on February 3, 2014, after the supernova went off (right).  The lack  of the detection of X-rays detected by Chandra is an important clue for astronomers looking for the exact mechanism of how this star exploded.
The non-detection of X-rays reveals that the region around the site of the supernova explosion is relatively devoid of material. This finding is a critical clue to the origin of the explosion. Astronomers expect that if a white dwarf exploded because it had been steadily collecting matter from a companion star prior to exploding, the mass transfer process would not be 100% efficient, and the white dwarf would be immersed in a cloud of gas.
If a significant amount of material were surrounding the doomed star, the blast wave generated by the supernova would have struck it by the time of the Chandra observation, producing a bright X-ray source. Since they do not detect any X-rays, the researchers determined that the region around SN 2014J is exceptionally clean.
A viable candidate for the cause of SN 2014J must explain the relatively gas-free environment around the star prior to the explosion.  One possibility is the merger of two white dwarf stars, in which case there might have been little mass transfer and pollution of the environment before the explosion. Another is that several smaller eruptions on the surface of the white dwarf cleared the region prior to the supernova.  Further observations a few hundred days after the explosion could shed light on the amount of gas in a larger volume, and help decide between these and other scenarios.
A paper describing these results was published in the July 20 issue of The Astrophysical Journal and is available online. The first author is Raffaella Margutti from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, MA, and the co-authors are Jerod Parrent (CfA), Atish Kamble (CfA), Alicia Soderberg (CfA), Ryan Foley (University of Illinois at Urbana-Champaign), Dan Milisavljevic (CfA), Maria Drout (CfA), and Robert Kirshner (CfA).
Image Credit: NASA/CXC/SAO/R.Margutti et al
› View large image
› Chandra on Flickr

The center section of the “pathfinder” (test) backplane of NASA’s James Webb Space Telescope arrived at the Goddard Space Flight Center in July 2014, to be part of a simulation of putting together vital parts of the telescope. In this photograph, the backplane is hoisted into place in the assembly stand in NASA Goddard’s giant cleanroom, where over the next several months engineers and scientists will install two spare primary mirror segments and a spare secondary mirror. By installing the mirrors on the replica, technicians are able to practice this delicate procedure for when the actual flight backplane arrives. Installation of the mirrors on the backplane requires precision, so practice is important.
> James Webb Space Telescope “Pathfinder” Backplane’s Path to NASA
Image Credit: NASA/Chris Gunn

ISS040-E-088856 (5 Aug. 2014) — NASA astronaut Reid Wiseman, Expedition 40 flight engineer, installs Capillary Channel Flow (CCF) experiment hardware in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. CCF is a versatile experiment for studying a critical variety of inertial-capillary dominated flows key to spacecraft systems that cannot be studied on the ground.
Capillary flow is the natural wicking of fluid between narrow channels in the opposite direction of gravity. Tree roots are one example of a capillary system, drawing water up from the soil. By increasing understanding of capillary flow in the absence of gravity, the Capillary Channel Flow (CCF) experiment helps scientists find new ways to move liquids in space. Capillary systems do not require pumps or moving parts, which reduces their cost, weight and complexity.
Image Credit: NASA

A perigee full moon or “supermoon” is seen, Sunday, Aug. 10, 2014, in Washington. A supermoon occurs when the moon’s orbit is closest (perigee) to Earth at the same time it is full.
Image Credit: NASA/Bill Ingalls