To see the impact of their investments, companies often use business intelligence tools — primarily data-analytics ­software — that analyze company data to link cash spent with outcomes.  

Now MIT spinout BrightBytes has developed similar data-analytics software for schools that links the implementation of classroom technologies, and other strategies, to student achievement. About one in seven U.S. schools now uses the software.

The software combines academic research with collected data on students, teachers, and schools to create school-by-school analyses and action plans for implementing technologies and strategies. This lets educators and administrators know where to direct their funding.

“It’s a business intelligence platform written for schools,” says BrightBytes CEO Rob Mancabelli MBA ’12, who worked in the education sector for 15 years before co-founding the startup. “Instead of a return-on-investment, though, it’s a ‘return-on-learning.’”

By giving educators these data-analytics tools, Mancabelli says, BrightBytes hopes to take the guessing game out of fund allocation. This is important, he says: The U.S. spends billions of dollars annually on classroom technologies — such as classroom tablets, interactive screens, and software — as well as targeted academic programs, yet it’s very difficult to measure whether any of these actually boost student success.   

“We think the best way to improve student learning is to give decision-makers who control the time, budget, and resources the best information to make decisions,” Mancabelli says. “If, along the way, it helps to eliminate financial missteps, then that’s fantastic.”

Mancabelli launched BrightBytes with entrepreneur Hisham Anwar MBA ’12, now chief technology officer, after the two met in the executive MBA program (EMBA) at the MIT Sloan School of Management. Over the course of the 20-month program, they turned BrightBytes from an abstract concept into a commercial product with more than 1,000 users.

There are six modules on BrightByte’s platform, called Clarity, that tackle different issues within schools. CASE is the module used to measure technology in the classroom. The startup’s most recent module, Early Warning, released last September, identifies at-risk students based on individual and school-specific factors. Five additional modules are due out this year.

Finding Clarity

Clarity works through a combination of human expertise and computation. Behind the platform is a team of researchers and data scientists who pore over academic papers, reports, and case studies to identify what works and what doesn’t in the classroom — for instance, finding technologies that have led to better student performance, or solutions that best curb the dropout rate.

Then, the platform takes information from surveys and questionnaires at the participating school, along with data from third-party sources — such as socioeconomic status and student performance — to report the school’s proficiency in certain areas.  

For example, a report from the CASE module will provide a numerical score for a school’s “proficiency” to implement classroom technologies based on factors such as student and teacher access to technology, overall online engagement among students, and professional development and support for teachers. Scores are given in five categories, ranging from 800 points or lower, to 1200.

If schools are deemed “proficient,” with a high number, they could be good to go. But if schools are lacking, the software suggests solutions. A certain school may want to use digital educational gaming, but it’ll first need to ensure that more students have access to mobile devices, and boost professional development for teachers, or the technology may have little to no impact on student success.

In its two years on the market, the software has shown some tangible results. In 2012, the Capital Area Independent Unit (CAIU) in Pennsylvania, which provides educational services to more than two dozen school districts, used CASE to gauge whether schools in its service area could successfully implement online and blended courses; results indicated significant gaps in technology access and professional development in some districts. Today, those districts have shown a 60 percent increase in student access to mobile devices, a 52 percent increase in teachers who post coursework online, and a 55 percent increase in online student collaboration.

The benefit of BrightBytes isn’t simply amassing data, but making sense of the data, Mancabelli says. With implementing classroom technologies, for example, administrators have had to spend a lot of time and money conducting their own research or hiring consultants.

“It’s rare anyone in schools, with as many things as they have on their plate, has time to do that,” Mancabelli says. “Instead, most use intuition to guess the problems and invest money and time into solutions and hope it turns out alright.”

This also happens when schools seek solutions for curbing the dropout rate, Mancabelli says. That’s why BrightBytes recently developed its Early Warning module, which has been adopted by the state of West Virginia. This module is powered by the same rigorous academic research as CASE, but instead analyzes 24 risk factors across schools — such as low attendance and grades, behavioral issues, and demographic factors — to flesh out the students in danger of dropping out.

The dashboard displays the total number of at-risk students, their likelihood to drop out, a list of the top at-risk students, and best practices to ensure that those students stay in school. It will also show which factors most likely lead to dropouts in the school’s district, so schools can choose which factors to focus on. “So you’re actually looking at research, and in the context of your own school,” Mancabelli says.

Scale meets mission

Today, BrightBytes is on its way to becoming an industry standard. But it began not too long ago at MIT Sloan as “ideas drawn on the back of napkins and on pieces of paper,” Anwar says.

In 2012, Mancabelli came to the EMBA program with aims of developing and scaling up technology that could help U.S. schools use hard data to find what works in the classroom. During the first week, he was grouped on a class project with Anwar, who had grown several successful tech startups in Silicon Valley — and was looking to put his entrepreneurship skills toward an altruistic cause. “I was in search of scale, and he was in search of a mission,” Mancabelli says. “It fit perfectly.”

Playing on each other’s strengths, they discussed a data-analytics platform that could link technology with student success. Within a couple of weeks, they’d built an early prototype of Clarity. Mancabelli pitched the platform to potential schools — and one jumped on the chance to purchase it.

Mancabelli recalls stepping out of class one day to answer a call from that school, which had offered $25,000 to build the platform. He then went back into his class, sat down next to Anwar, and texted him the information. “The look on his face and the way he raised his eyes when he got the text was priceless,” Mancabelli says.

In 45 days, they developed the CASE module and, a within a few months, had garnered 1,000 school clients across the nation.

Anwar attributes some of this early success to MIT Sloan’s rigorous EMBA program, which taught him how to bring ideas together, very quickly, into a tangible product. Another benefit was the program’s “very multidimensional” culture, he adds, where CEOs, novice and seasoned entrepreneurs, and senior executives, all with different skillsets and backgrounds, work together.

“There was a very diverse, unusual group of people who were the first-time collaborators with other people in other markets and industry,” he says. “That was a great learning experience.”

In fact, Mancabelli attributes BrightBytes’s rapid rise to this mixture of differing skillsets: his expertise on education, along with Anwar’s ability to produce technology at scale. “Hisham could translate my understanding of the pain points within schools, and solutions they needed, into a platform that would meet those needs,” Mancabelli says. “Having a grounding in what people in the market needed, as well as having grounding in what would scale to hundreds or millions of users, were two things that really accelerated our ability to grow.”

By Rob Matheson | MIT News Office

To see the impact of their investments, companies often use business intelligence tools — primarily data-analytics ­software — that analyze company data to link cash spent with outcomes.  

Now MIT spinout BrightBytes has developed similar data-analytics software for schools that links the implementation of classroom technologies, and other strategies, to student achievement. About one in seven U.S. schools now uses the software.

The software combines academic research with collected data on students, teachers, and schools to create school-by-school analyses and action plans for implementing technologies and strategies. This lets educators and administrators know where to direct their funding.

“It’s a business intelligence platform written for schools,” says BrightBytes CEO Rob Mancabelli MBA ’12, who worked in the education sector for 15 years before co-founding the startup. “Instead of a return-on-investment, though, it’s a ‘return-on-learning.’”

By giving educators these data-analytics tools, Mancabelli says, BrightBytes hopes to take the guessing game out of fund allocation. This is important, he says: The U.S. spends billions of dollars annually on classroom technologies — such as classroom tablets, interactive screens, and software — as well as targeted academic programs, yet it’s very difficult to measure whether any of these actually boost student success.   

“We think the best way to improve student learning is to give decision-makers who control the time, budget, and resources the best information to make decisions,” Mancabelli says. “If, along the way, it helps to eliminate financial missteps, then that’s fantastic.”

Mancabelli launched BrightBytes with entrepreneur Hisham Anwar MBA ’12, now chief technology officer, after the two met in the executive MBA program (EMBA) at the MIT Sloan School of Management. Over the course of the 20-month program, they turned BrightBytes from an abstract concept into a commercial product with more than 1,000 users.

There are six modules on BrightByte’s platform, called Clarity, that tackle different issues within schools. CASE is the module used to measure technology in the classroom. The startup’s most recent module, Early Warning, released last September, identifies at-risk students based on individual and school-specific factors. Five additional modules are due out this year.

Finding Clarity

Clarity works through a combination of human expertise and computation. Behind the platform is a team of researchers and data scientists who pore over academic papers, reports, and case studies to identify what works and what doesn’t in the classroom — for instance, finding technologies that have led to better student performance, or solutions that best curb the dropout rate.

Then, the platform takes information from surveys and questionnaires at the participating school, along with data from third-party sources — such as socioeconomic status and student performance — to report the school’s proficiency in certain areas.  

For example, a report from the CASE module will provide a numerical score for a school’s “proficiency” to implement classroom technologies based on factors such as student and teacher access to technology, overall online engagement among students, and professional development and support for teachers. Scores are given in five categories, ranging from 800 points or lower, to 1200.

If schools are deemed “proficient,” with a high number, they could be good to go. But if schools are lacking, the software suggests solutions. A certain school may want to use digital educational gaming, but it’ll first need to ensure that more students have access to mobile devices, and boost professional development for teachers, or the technology may have little to no impact on student success.

In its two years on the market, the software has shown some tangible results. In 2012, the Capital Area Independent Unit (CAIU) in Pennsylvania, which provides educational services to more than two dozen school districts, used CASE to gauge whether schools in its service area could successfully implement online and blended courses; results indicated significant gaps in technology access and professional development in some districts. Today, those districts have shown a 60 percent increase in student access to mobile devices, a 52 percent increase in teachers who post coursework online, and a 55 percent increase in online student collaboration.

The benefit of BrightBytes isn’t simply amassing data, but making sense of the data, Mancabelli says. With implementing classroom technologies, for example, administrators have had to spend a lot of time and money conducting their own research or hiring consultants.

“It’s rare anyone in schools, with as many things as they have on their plate, has time to do that,” Mancabelli says. “Instead, most use intuition to guess the problems and invest money and time into solutions and hope it turns out alright.”

This also happens when schools seek solutions for curbing the dropout rate, Mancabelli says. That’s why BrightBytes recently developed its Early Warning module, which has been adopted by the state of West Virginia. This module is powered by the same rigorous academic research as CASE, but instead analyzes 24 risk factors across schools — such as low attendance and grades, behavioral issues, and demographic factors — to flesh out the students in danger of dropping out.

The dashboard displays the total number of at-risk students, their likelihood to drop out, a list of the top at-risk students, and best practices to ensure that those students stay in school. It will also show which factors most likely lead to dropouts in the school’s district, so schools can choose which factors to focus on. “So you’re actually looking at research, and in the context of your own school,” Mancabelli says.

Scale meets mission

Today, BrightBytes is on its way to becoming an industry standard. But it began not too long ago at MIT Sloan as “ideas drawn on the back of napkins and on pieces of paper,” Anwar says.

In 2012, Mancabelli came to the EMBA program with aims of developing and scaling up technology that could help U.S. schools use hard data to find what works in the classroom. During the first week, he was grouped on a class project with Anwar, who had grown several successful tech startups in Silicon Valley — and was looking to put his entrepreneurship skills toward an altruistic cause. “I was in search of scale, and he was in search of a mission,” Mancabelli says. “It fit perfectly.”

Playing on each other’s strengths, they discussed a data-analytics platform that could link technology with student success. Within a couple of weeks, they’d built an early prototype of Clarity. Mancabelli pitched the platform to potential schools — and one jumped on the chance to purchase it.

Mancabelli recalls stepping out of class one day to answer a call from that school, which had offered $25,000 to build the platform. He then went back into his class, sat down next to Anwar, and texted him the information. “The look on his face and the way he raised his eyes when he got the text was priceless,” Mancabelli says.

In 45 days, they developed the CASE module and, a within a few months, had garnered 1,000 school clients across the nation.

Anwar attributes some of this early success to MIT Sloan’s rigorous EMBA program, which taught him how to bring ideas together, very quickly, into a tangible product. Another benefit was the program’s “very multidimensional” culture, he adds, where CEOs, novice and seasoned entrepreneurs, and senior executives, all with different skillsets and backgrounds, work together.

“There was a very diverse, unusual group of people who were the first-time collaborators with other people in other markets and industry,” he says. “That was a great learning experience.”

In fact, Mancabelli attributes BrightBytes’s rapid rise to this mixture of differing skillsets: his expertise on education, along with Anwar’s ability to produce technology at scale. “Hisham could translate my understanding of the pain points within schools, and solutions they needed, into a platform that would meet those needs,” Mancabelli says. “Having a grounding in what people in the market needed, as well as having grounding in what would scale to hundreds or millions of users, were two things that really accelerated our ability to grow.”

By Rob Matheson | MIT News Office

Social circles

March 4, 2015

If you live in a city, you know that a fair amount of your movement around town is social in nature. But how much, exactly? A new study co-authored by MIT researchers uses a novel method to infer that around one-fifth of urban movement is strictly social, a finding that holds up consistently in multiple cities.

The study used anonymized phone data that, unlike most data in the field, provides information that can be used to reconstruct both people’s locations and their social networks. By linking this information together, the researchers were able to build a picture indicating which networks were primarily social, as opposed to work-oriented, and then deduce how much city movement was due to social activity.

“Adding two data sources — one on the social side and one on the mobility side — and layering them one on top of each other gives you something that’s a little bit greater,” says Jameson Toole, a PhD student in MIT’s Engineering Systems Division, and one of the authors of a newly published paper outlining the study’s results.

“It’s a way to look at the data that wasn’t done before,” says Marta Gonzalez, an assistant professor in MIT’s Department of Civil and Environmental Engineering, and another co-author of the study.

By developing a new means of quantifying how much urban travel is based on social activity, the researchers believe they have started creating a new analytical tool that could be of use to planners and policymakers.

“There are a lot of people who need to have estimates of how people move around cities: transportation planners and other urban planners,” Toole says. “But a lot of data-driven models don’t take into account social behavior. What we found is that … if you are trying to estimate movement in a city and you don’t include the social component, your estimates are going to be off by about 20 percent.”

Going mobile

The paper, “Coupling human mobility and social ties,” is appearing this week in Interface, a peer-reviewed journal published by the Royal Society. The co-authors are Toole, who is the lead author; Carlos Herrer-Yaque, of the Technical University of Madrid; Gonzalez, who is the principal investigator on the study; and Christian Schneider, an MIT post-doctoral researcher during the course of the study.

The study’s anonymized mobile phone data comes from three major cities in Europe and South America. By examining the locations of calls, the networks of calls made, and the times of contact, the researchers found that most people have essentially three kinds of social networks in cities: social companions (who they are around a lot in the evenings and on weekends), work colleagues (who they tend to contact during weekdays), and more distant acquaintances with whom people have more sporadic contact.

After distinguishing these networks from each other, the researchers were able to quantify the extent to which social activity was the primary cause of an urban trip; their conclusion falls within the bounds of previous, broader estimates, which have ascribed 15 to 30 percent of urban movement to social activity.

“It’s pretty rare you would find these patterns showing up by themselves in multiple cities,” Toole says. “It lends credence to the universality of this [pattern].”

In the paper, the researchers also build a model of urban social movement, which they call the “GeoSim” model; it extends previous models of urban mobility by adding a layer relating to social-activity choices. The model better fits the data in this study, and could be tested against future data sets as well.

“Big data is amazing,” Toole says, “but this adds the context back into the social networks and movements.”

Scholars say the paper brings new insight to urban mobility studies. The study’s “novelty resides in the method used to study the relationship between mobility of different users and their social relationship,” explains Esteban Moro, a professor of mathematics at the Charles III University of Madrid, in Spain. “Using different mobility metrics, the authors are able to know the nature of the relationship between two people. … This allows a quantitative understanding of how people manage their time, tasks, [and] interactions in a geographical context like cities.”

Moro adds that the current research project opens the way for more detailed studies of the subject, noting, “It would be interesting to see if the socioeconomic status of people, their age, and/or gender have a role in the results found.”

The research was partly funded by the Accenture-MIT Alliance in Business Analytics, the Center for Complex Engineering Systems at MIT, and the National Science Foundation.

By Peter Dizikes | MIT News Office

Robert Langer, the David H. Koch Institute Professor at MIT, has been named the winner of this year’s Queen Elizabeth Prize for Engineering for his revolutionary advances and leadership in engineering at the interface of chemistry and medicine. The award credits Langer with improving more than 2 billion lives worldwide through the disease treatments created in his lab. Langer will receive the prize from Queen Elizabeth II in a ceremony later this year.

“Bold, down to earth, and incredibly creative, Bob Langer represents the very best of MIT: a daring inventor, a brilliant entrepreneur, and an admired and beloved educator,” MIT President L. Rafael Reif says. “His creativity has changed the world not only through his own innovations but through the hundreds of exceptional engineers who have begun their careers in his lab. If engineering is the art of transforming knowledge into progress, then the Queen Elizabeth Prize for Engineering could go to no one who deserves it more than Bob.”

Langer, who holds appointments in MIT’s departments of chemical engineering and biological engineering, and at the Institute for Medical Engineering and Science and the Koch Institute for Integrative Cancer Research, is cited as “the first person to engineer polymers to control the delivery of large molecular weight drugs for the treatment of diseases such as cancer and mental illness.”

The Queen Elizabeth Prize for Engineering is a global £1 million prize that celebrates engineers whose innovations have been of global benefit to humanity. The objective of the prize is to raise the public profile of engineering and to inspire young people to become engineers.

“The number one thing we look at is, ‘Can we relieve suffering?’” Langer said in an interview with the BBC earlier today. “That’s the thing that drives me, and drives many who do this work — to relieve suffering and improve life.”

“A prize like this is intended to celebrate engineering,” Langer added. “Hopefully young people will read about it and think it’s a great career. In the end, a culture gets what it celebrates.”

Langer received his bachelor’s degree in chemical engineering from Cornell University, and earned his ScD in chemical engineering from MIT. He has written more than 1,175 research papers — which have made him the world’s most cited engineering researcher — and holds approximately 800 issued and pending patents worldwide, which have been licensed or sublicensed to hundreds of pharmaceutical, chemical, biotechnology, and medical device companies.

In 1989, Langer was elected to the Institute of Medicine of the National Academy of Sciences, and in 1992 he was elected to both the National Academy of Engineering and the National Academy of Sciences. He served as a member of the Food and Drug Administration’s Science Board from 1995 to 2002, and as the board’s chairman from 1999 to 2002. He has received more than 200 awards, including the National Medal of Science in 2006, the Millennium Prize in 2008, the Priestley Medal in 2012, the National Medal of Technology and Innovation in 2012, the Charles Stark Draper Prize, and the Gairdner Foundation International Award.

In the popular media, both BioWorld and Forbes have named Langer as one of the world’s 25 most important individuals in biotechnology, in 1990 and 1999, respectively. In 2001, both Time and CNN named Langer as among the 100 most important people in America, and as one of the top Americans in science or medicine. In 2002, Discover named him as one of the 20 most important people in biotechnology, and Forbes selected him as one of the 15 innovators worldwide who will reinvent our future.

By Karen Shaner and Robert Fadel | School of Engineering

Social circles

March 4, 2015

If you live in a city, you know that a fair amount of your movement around town is social in nature. But how much, exactly? A new study co-authored by MIT researchers uses a novel method to infer that around one-fifth of urban movement is strictly social, a finding that holds up consistently in multiple cities.

The study used anonymized phone data that, unlike most data in the field, provides information that can be used to reconstruct both people’s locations and their social networks. By linking this information together, the researchers were able to build a picture indicating which networks were primarily social, as opposed to work-oriented, and then deduce how much city movement was due to social activity.

“Adding two data sources — one on the social side and one on the mobility side — and layering them one on top of each other gives you something that’s a little bit greater,” says Jameson Toole, a PhD student in MIT’s Engineering Systems Division, and one of the authors of a newly published paper outlining the study’s results.

“It’s a way to look at the data that wasn’t done before,” says Marta Gonzalez, an assistant professor in MIT’s Department of Civil and Environmental Engineering, and another co-author of the study.

By developing a new means of quantifying how much urban travel is based on social activity, the researchers believe they have started creating a new analytical tool that could be of use to planners and policymakers.

“There are a lot of people who need to have estimates of how people move around cities: transportation planners and other urban planners,” Toole says. “But a lot of data-driven models don’t take into account social behavior. What we found is that … if you are trying to estimate movement in a city and you don’t include the social component, your estimates are going to be off by about 20 percent.”

Going mobile

The paper, “Coupling human mobility and social ties,” is appearing this week in Interface, a peer-reviewed journal published by the Royal Society. The co-authors are Toole, who is the lead author; Carlos Herrer-Yaque, of the Technical University of Madrid; Gonzalez, who is the principal investigator on the study; and Christian Schneider, an MIT post-doctoral researcher during the course of the study.

The study’s anonymized mobile phone data comes from three major cities in Europe and South America. By examining the locations of calls, the networks of calls made, and the times of contact, the researchers found that most people have essentially three kinds of social networks in cities: social companions (who they are around a lot in the evenings and on weekends), work colleagues (who they tend to contact during weekdays), and more distant acquaintances with whom people have more sporadic contact.

After distinguishing these networks from each other, the researchers were able to quantify the extent to which social activity was the primary cause of an urban trip; their conclusion falls within the bounds of previous, broader estimates, which have ascribed 15 to 30 percent of urban movement to social activity.

“It’s pretty rare you would find these patterns showing up by themselves in multiple cities,” Toole says. “It lends credence to the universality of this [pattern].”

In the paper, the researchers also build a model of urban social movement, which they call the “GeoSim” model; it extends previous models of urban mobility by adding a layer relating to social-activity choices. The model better fits the data in this study, and could be tested against future data sets as well.

“Big data is amazing,” Toole says, “but this adds the context back into the social networks and movements.”

Scholars say the paper brings new insight to urban mobility studies. The study’s “novelty resides in the method used to study the relationship between mobility of different users and their social relationship,” explains Esteban Moro, a professor of mathematics at the Charles III University of Madrid, in Spain. “Using different mobility metrics, the authors are able to know the nature of the relationship between two people. … This allows a quantitative understanding of how people manage their time, tasks, [and] interactions in a geographical context like cities.”

Moro adds that the current research project opens the way for more detailed studies of the subject, noting, “It would be interesting to see if the socioeconomic status of people, their age, and/or gender have a role in the results found.”

The research was partly funded by the Accenture-MIT Alliance in Business Analytics, the Center for Complex Engineering Systems at MIT, and the National Science Foundation.

By Peter Dizikes | MIT News Office

During the 2012 election season, Edward Schiappa closely watched the campaign in his longtime home of Minnesota, where voters were entertaining a measure called Amendment 1. A “yes” vote would have changed the state constitution to make marriage legal only between a man and a woman; a “no” vote would have been a move in favor of gay rights.

“Going into the 2012 election, I was not at all optimistic about the results,” says Schiappa, then a professor of communications at the University of Minnesota, who favored a “no” vote. After all, the “yes” campaign led in many polls late into the summer. But the momentum then shifted: The “no” side starting gaining traction, and on Election Day, Minnesota voters voted “no” by a 51-47 margin.

“I was watching the Minnesota campaign thinking, ‘They’re blowing it,’” Schiappa recalls of the amendment’s opponents. “But in fact they did exactly the right thing. They had a much stronger ground game, they enlisted a lot of religious leaders … and they reframed the debate [toward] family values, that this is promoting love and companionship and family. And history was made.”

Schiappa has a keen understanding of another factor behind the “no” vote on Amendment 1: mass media and popular culture. Nearly a decade earlier, in multiple papers, Schiappa and a pair of colleagues had been among the first scholars to present empirical evidence suggesting that television shows featuring gay characters, such as “Will & Grace” were creating more positive attitudes about gays in the minds of the general public. Indeed, they found, this change “was most pronounced for those with the least amount of social contact with lesbians and gay men.”

A decade before that, in the 1990s, few people could have foreseen that Schiappa would be studying contemporary mass media. He established his academic reputation as a scholar of ancient Greek rhetoric, writing three books on the subject. Schiappa’s breadth of knowledge and appetite for new types of inquiry are two reasons he is now serving as head of MIT’s section in Comparative Media Studies/Writing, having joined the Institute in 2013 as the John E. Burchard Professor.

To Schiappa, this feels like a natural evolution.

“Rhetoric has been understood primarily as about persuasion, and that is a huge topic,” he explains. “Ancient rhetoric was when thinkers first explored the relationship between language and thought, and the role of ‘reasoned speech’ in collective decision-making. Those issues are still central to communication studies today. … So for me, there was never a disconnect between the study of classical and contemporary rhetorical theory.”

Debating the future

Growing up in Manhattan, Kan., Schiappa knew he would end up in a classroom. He just didn’t know it would be at the university level.

“Starting in high school I knew I wanted to be a teacher, and as I worked my way through college I planned to be a high-school teacher and debate coach,” Schiappa explains.

But as he was finishing his undergraduate degree in 1980, Schiappa says, “I was offered a position to coach the debate team at Kansas State University. It took only a few months for me to realize I really enjoyed teaching college students, and I’ve never looked back.”  

Schiappa enrolled in a master’s program at Northwestern University, which has a leading debate program, “thinking I would get a quick master’s degree, then return to K-State.” That isn’t quite what happened: As a graduate student, he “discovered how much I enjoyed research and writing.” He also happened to be fascinated by the Greek Sophists, pioneers of classical rhetoric — partly spurred by a bestseller from the 1970s, “Zen and the Art of Motorcycle Maintenance,” which discusses the Sophists.

After receiving his PhD from Northwestern in 1989, Schiappa taught at Kansas State and Purdue University before joining Minnesota in 1995. While much of his research at the time focused on Greek rhetoric, Schiappa’s interests also started shifting into the contemporary era. His methods have also evolved, to include quantitative audience measurement as a tool for understanding the effectiveness of mass-media communication.

“What I have tried to bring to the table is a mix of comparative methods that combines the best insights from both approaches,” Schiappa explains. “So we can analyze and critique individual shows like ‘Will & Grace,’ but also step back and talk with audiences and do surveys that can help us understand the important cultural work such a show does.”

The “parasocial contact hypothesis”

Schiappa’s mass-media studies are also interdisciplinary in nature. While studying “Will & Grace” and other shows, including “Six Feet Under” and “Queer Eye for the Straight Guy,” Schiappa and his colleagues formulated what they call the “parasocial contact hypothesis,” which suggests that media content can influence social attitudes, much as direct human interaction does.

The idea links a pair of ideas from psychology — Schiappa started college as a psychology major — known as “parasocial contact” and “contact hypothesis.” “I think it’s important for communication scholars to be aware of work that’s being done in other disciplines,” Schiappa says.

Schiappa says he enjoys teaching, and encourages students to work on research with him, when possible; one of his books was co-authored with a former student. “I’ve been teaching long enough now that it’s enormously satisfying to hear from students I’ve had, in some cases decades ago, [and] to know you positively influenced students,” Schiappa says.

And while Schiappa was content at Minnesota, he is enthused about the challenges of his still-new position at the Institute.

“It was a fortuitous coming together of my background and MIT’s needs,” he says. “I’m happy to be here.”

By Peter Dizikes | MIT News Office

Robert Langer, the David H. Koch Institute Professor at MIT, has been named the winner of this year’s Queen Elizabeth Prize for Engineering for his revolutionary advances and leadership in engineering at the interface of chemistry and medicine. The award credits Langer with improving more than 2 billion lives worldwide through the disease treatments created in his lab. Langer will receive the prize from Queen Elizabeth II in a ceremony later this year.

“Bold, down to earth, and incredibly creative, Bob Langer represents the very best of MIT: a daring inventor, a brilliant entrepreneur, and an admired and beloved educator,” MIT President L. Rafael Reif says. “His creativity has changed the world not only through his own innovations but through the hundreds of exceptional engineers who have begun their careers in his lab. If engineering is the art of transforming knowledge into progress, then the Queen Elizabeth Prize for Engineering could go to no one who deserves it more than Bob.”

Langer, who holds appointments in MIT’s departments of chemical engineering and biological engineering, and at the Institute for Medical Engineering and Science and the Koch Institute for Integrative Cancer Research, is cited as “the first person to engineer polymers to control the delivery of large molecular weight drugs for the treatment of diseases such as cancer and mental illness.”

The Queen Elizabeth Prize for Engineering is a global £1 million prize that celebrates engineers whose innovations have been of global benefit to humanity. The objective of the prize is to raise the public profile of engineering and to inspire young people to become engineers.

“The number one thing we look at is, ‘Can we relieve suffering?’” Langer said in an interview with the BBC earlier today. “That’s the thing that drives me, and drives many who do this work — to relieve suffering and improve life.”

“A prize like this is intended to celebrate engineering,” Langer added. “Hopefully young people will read about it and think it’s a great career. In the end, a culture gets what it celebrates.”

Langer received his bachelor’s degree in chemical engineering from Cornell University, and earned his ScD in chemical engineering from MIT. He has written more than 1,175 research papers — which have made him the world’s most cited engineering researcher — and holds approximately 800 issued and pending patents worldwide, which have been licensed or sublicensed to hundreds of pharmaceutical, chemical, biotechnology, and medical device companies.

In 1989, Langer was elected to the Institute of Medicine of the National Academy of Sciences, and in 1992 he was elected to both the National Academy of Engineering and the National Academy of Sciences. He served as a member of the Food and Drug Administration’s Science Board from 1995 to 2002, and as the board’s chairman from 1999 to 2002. He has received more than 200 awards, including the National Medal of Science in 2006, the Millennium Prize in 2008, the Priestley Medal in 2012, the National Medal of Technology and Innovation in 2012, the Charles Stark Draper Prize, and the Gairdner Foundation International Award.

In the popular media, both BioWorld and Forbes have named Langer as one of the world’s 25 most important individuals in biotechnology, in 1990 and 1999, respectively. In 2001, both Time and CNN named Langer as among the 100 most important people in America, and as one of the top Americans in science or medicine. In 2002, Discover named him as one of the 20 most important people in biotechnology, and Forbes selected him as one of the 15 innovators worldwide who will reinvent our future.

By Karen Shaner and Robert Fadel | School of Engineering

As a teaching assistant at the MIT Sloan School of Management in 2010, Amit Maimon MBA ’11 witnessed the origins of a technological phenomenon: Smartphones and tablets had started creeping into the classroom in the hands of students.

But instead of dismissing these devices as distractions, Maimon saw a way to leverage them to help teachers get a better idea of what students grasp during lectures.

That year, Maimon co-developed Socrative, an app that lets teachers design or select premade quizzes for students to answer, publicly or anonymously, on personal mobile devices during lectures. The app is now being used by about 1.1 million teachers and millions of students across the globe.

The idea is that students respond better to quizzes deployed via mobile devices — “which they’re already staring at,” Maimon says — and many feel more comfortable answering questions anonymously. For the teacher, the accumulated data gives immediate feedback on student comprehension — allowing tailoring of lectures to address problematic material — and tracks student or class progress over time.

“Teachers benefit tremendously by having knowledge of what their students find easy or difficult, what they’re understanding or not, in the moment, in class,” says Maimon, who co-founded a startup, also called Socrative, to commercialize the app. “Teachers [with Socrative] can see how well the class is doing in a very detailed way, and see who’s struggling more, what the class doesn’t understand, and even which students can help others.”

Quizzes can be designed, using a “teacher” app, on any mobile device — either as one-off questions or as a series of true-or-false, multiple-choice, or open-ended questions. In the classroom, students can punch in a class’s identification number on their “student” apps and answer away. Color-coded results for each student and question pop up instantly in the teacher app in rows and columns, with green boxes indicating correct responses, and red boxes indicating incorrect responses.

Importantly, the app is a time-saver — grading is automatic, and there’s a growing database of premade quizzes designed and shared by teachers — which has contributed to its wide adoption, Maimon says. In June, after accumulating 750,000 teacher users worldwide, Socrative sold for $5 million in stock and cash to MasteryConnect, a company that provides digital student-assessment tools to around 85 percent of U.S. school districts.

Current Socrative employees — including two co-founders, Benjamin Berte and Michael West — are further developing the app under MasteryConnect. (After the acquisition, Maimon is no longer part of the company.)

From classroom to classroom

Socrative was conceived and trialed in course 15.060 (Data, Models, Decisions), where Maimon served as a teaching assistant. Frequently, after lectures, students would pose questions about certain aspects of material that were not fully addressed in class, reflecting an understanding that was very different from what he might have expected.

Back then, the only real-time student-response systems were “clickers” — remote-control-like devices with buttons students can press to answer questions or vote in class. But teachers usually rent those systems, which can be expensive, and the systems are difficult to implement.

Seeing the inevitability of mobile devices in the classroom, Maimon recruited fellow MIT Sloan students — Slava Menn MBA ’11, Puneet Newaskar SM ’03, MBA ’11, Karan Singh MBA ’11, Tal Snir MBA ’11, and Jaime Contreras MBA ’11 — to help build an early prototype for an app that would send out a few multiple-choice questions on material he taught during class.

When he used the app in class a few days later, Maimon saw the potential power of gathering anonymous, real-time data. First, his students voted on answers to lesson-based questions by a show of hands. Then the students weighed in anonymously on the same questions on the prototype app. Maimon saw that certain answers received more votes anonymously than by a show of hands. One reason, he posits: Students may be uncomfortable admitting they don’t understand, so they don’t ask for clarification.

“That’s when the power of real-time anonymity came in, which is fantastic because it changes the social layout,” he says. “If you’re afraid of asking a question because you think you’re the only one who doesn’t understand it, and then suddenly you remove that barrier, you see many others don’t understand as well, and it changes people’s comfort levels.”

In 2010, Maimon recruited Berte and West, and turned to mentors in MIT’s Venture Mentoring Service and Martin Trust Center for MIT Entrepreneurship for advice on marketing and financing, among other things. In 2011, they joined the Imagine K-12 startup accelerator in Palo Alto, Calif., and grew out their team.

“It was internal and external momentum,” Maimon says. “The more we saw people being excited about it from the outside, and the more we brought in team members who were excited about carrying this forward internally, the more we realized this is turning into an actual company.”

That momentum carried Socrative through to the 2012-13 academic year, when the app saw 278,000 quizzes created and shared by more than 3 million teachers and students worldwide, with more than 1,000 teacher users joining per day.

The experience of teachers

Today, other companies have released similar student-response tools. But what sets Socrative apart, Maimon says, is a core focus on K-12 teachers, which informs its simple design.

The app, for instance, has dedicated K-12 features, making it accessible to a broad audience, Maimon says. Apart from quizzes, a “space race” feature lets students compete for the most correct responses; “exit tickets” let students weigh in on what they learned — and what they’d like to learn — as they’re leaving the class.

This simplicity is especially important for teachers trying to educate dozens of students — sometimes very young — without disrupting class. “The experience of the teachers in the class became core to everything we do: making sure that it’s seamless. We knew that if we can’t make it simple enough for core users, we aren’t going to intro more teachers into our system,” Maimon says.

Today, testimonials on the company’s website — and countless online reviews from K-12 teachers of all disciplines — laud the app for its simplicity, as well as for saving time, helping students better understand material, and providing clear data analysis on student progress.

Having reached so many teachers, Socrative is expanding its mission — such as by using data to improve and personalize K-12 education. For instance, Maimon says, should some students learn by video or by lecture? What lessons should be taught by hands-on, experiential methods? Overall, how can we provide better tools for teachers to help every student based on individual needs?

“We need a body of data that is available to start deriving meaningful insights about how to tailor learning methods to students,” Maimon says. “That’s the lofty objective.”

By Rob Matheson | MIT News Office

During the 2012 election season, Edward Schiappa closely watched the campaign in his longtime home of Minnesota, where voters were entertaining a measure called Amendment 1. A “yes” vote would have changed the state constitution to make marriage legal only between a man and a woman; a “no” vote would have been a move in favor of gay rights.

“Going into the 2012 election, I was not at all optimistic about the results,” says Schiappa, then a professor of communications at the University of Minnesota, who favored a “no” vote. After all, the “yes” campaign led in many polls late into the summer. But the momentum then shifted: The “no” side starting gaining traction, and on Election Day, Minnesota voters voted “no” by a 51-47 margin.

“I was watching the Minnesota campaign thinking, ‘They’re blowing it,’” Schiappa recalls of the amendment’s opponents. “But in fact they did exactly the right thing. They had a much stronger ground game, they enlisted a lot of religious leaders … and they reframed the debate [toward] family values, that this is promoting love and companionship and family. And history was made.”

Schiappa has a keen understanding of another factor behind the “no” vote on Amendment 1: mass media and popular culture. Nearly a decade earlier, in multiple papers, Schiappa and a pair of colleagues had been among the first scholars to present empirical evidence suggesting that television shows featuring gay characters, such as “Will & Grace” were creating more positive attitudes about gays in the minds of the general public. Indeed, they found, this change “was most pronounced for those with the least amount of social contact with lesbians and gay men.”

A decade before that, in the 1990s, few people could have foreseen that Schiappa would be studying contemporary mass media. He established his academic reputation as a scholar of ancient Greek rhetoric, writing three books on the subject. Schiappa’s breadth of knowledge and appetite for new types of inquiry are two reasons he is now serving as head of MIT’s section in Comparative Media Studies/Writing, having joined the Institute in 2013 as the John E. Burchard Professor.

To Schiappa, this feels like a natural evolution.

“Rhetoric has been understood primarily as about persuasion, and that is a huge topic,” he explains. “Ancient rhetoric was when thinkers first explored the relationship between language and thought, and the role of ‘reasoned speech’ in collective decision-making. Those issues are still central to communication studies today. … So for me, there was never a disconnect between the study of classical and contemporary rhetorical theory.”

Debating the future

Growing up in Manhattan, Kan., Schiappa knew he would end up in a classroom. He just didn’t know it would be at the university level.

“Starting in high school I knew I wanted to be a teacher, and as I worked my way through college I planned to be a high-school teacher and debate coach,” Schiappa explains.

But as he was finishing his undergraduate degree in 1980, Schiappa says, “I was offered a position to coach the debate team at Kansas State University. It took only a few months for me to realize I really enjoyed teaching college students, and I’ve never looked back.”  

Schiappa enrolled in a master’s program at Northwestern University, which has a leading debate program, “thinking I would get a quick master’s degree, then return to K-State.” That isn’t quite what happened: As a graduate student, he “discovered how much I enjoyed research and writing.” He also happened to be fascinated by the Greek Sophists, pioneers of classical rhetoric — partly spurred by a bestseller from the 1970s, “Zen and the Art of Motorcycle Maintenance,” which discusses the Sophists.

After receiving his PhD from Northwestern in 1989, Schiappa taught at Kansas State and Purdue University before joining Minnesota in 1995. While much of his research at the time focused on Greek rhetoric, Schiappa’s interests also started shifting into the contemporary era. His methods have also evolved, to include quantitative audience measurement as a tool for understanding the effectiveness of mass-media communication.

“What I have tried to bring to the table is a mix of comparative methods that combines the best insights from both approaches,” Schiappa explains. “So we can analyze and critique individual shows like ‘Will & Grace,’ but also step back and talk with audiences and do surveys that can help us understand the important cultural work such a show does.”

The “parasocial contact hypothesis”

Schiappa’s mass-media studies are also interdisciplinary in nature. While studying “Will & Grace” and other shows, including “Six Feet Under” and “Queer Eye for the Straight Guy,” Schiappa and his colleagues formulated what they call the “parasocial contact hypothesis,” which suggests that media content can influence social attitudes, much as direct human interaction does.

The idea links a pair of ideas from psychology — Schiappa started college as a psychology major — known as “parasocial contact” and “contact hypothesis.” “I think it’s important for communication scholars to be aware of work that’s being done in other disciplines,” Schiappa says.

Schiappa says he enjoys teaching, and encourages students to work on research with him, when possible; one of his books was co-authored with a former student. “I’ve been teaching long enough now that it’s enormously satisfying to hear from students I’ve had, in some cases decades ago, [and] to know you positively influenced students,” Schiappa says.

And while Schiappa was content at Minnesota, he is enthused about the challenges of his still-new position at the Institute.

“It was a fortuitous coming together of my background and MIT’s needs,” he says. “I’m happy to be here.”

By Peter Dizikes | MIT News Office

As a teaching assistant at the MIT Sloan School of Management in 2010, Amit Maimon MBA ’11 witnessed the origins of a technological phenomenon: Smartphones and tablets had started creeping into the classroom in the hands of students.

But instead of dismissing these devices as distractions, Maimon saw a way to leverage them to help teachers get a better idea of what students grasp during lectures.

That year, Maimon co-developed Socrative, an app that lets teachers design or select premade quizzes for students to answer, publicly or anonymously, on personal mobile devices during lectures. The app is now being used by about 1.1 million teachers and millions of students across the globe.

The idea is that students respond better to quizzes deployed via mobile devices — “which they’re already staring at,” Maimon says — and many feel more comfortable answering questions anonymously. For the teacher, the accumulated data gives immediate feedback on student comprehension — allowing tailoring of lectures to address problematic material — and tracks student or class progress over time.

“Teachers benefit tremendously by having knowledge of what their students find easy or difficult, what they’re understanding or not, in the moment, in class,” says Maimon, who co-founded a startup, also called Socrative, to commercialize the app. “Teachers [with Socrative] can see how well the class is doing in a very detailed way, and see who’s struggling more, what the class doesn’t understand, and even which students can help others.”

Quizzes can be designed, using a “teacher” app, on any mobile device — either as one-off questions or as a series of true-or-false, multiple-choice, or open-ended questions. In the classroom, students can punch in a class’s identification number on their “student” apps and answer away. Color-coded results for each student and question pop up instantly in the teacher app in rows and columns, with green boxes indicating correct responses, and red boxes indicating incorrect responses.

Importantly, the app is a time-saver — grading is automatic, and there’s a growing database of premade quizzes designed and shared by teachers — which has contributed to its wide adoption, Maimon says. In June, after accumulating 750,000 teacher users worldwide, Socrative sold for $5 million in stock and cash to MasteryConnect, a company that provides digital student-assessment tools to around 85 percent of U.S. school districts.

Current Socrative employees — including two co-founders, Benjamin Berte and Michael West — are further developing the app under MasteryConnect. (After the acquisition, Maimon is no longer part of the company.)

From classroom to classroom

Socrative was conceived and trialed in course 15.060 (Data, Models, Decisions), where Maimon served as a teaching assistant. Frequently, after lectures, students would pose questions about certain aspects of material that were not fully addressed in class, reflecting an understanding that was very different from what he might have expected.

Back then, the only real-time student-response systems were “clickers” — remote-control-like devices with buttons students can press to answer questions or vote in class. But teachers usually rent those systems, which can be expensive, and the systems are difficult to implement.

Seeing the inevitability of mobile devices in the classroom, Maimon recruited fellow MIT Sloan students — Slava Menn MBA ’11, Puneet Newaskar SM ’03, MBA ’11, Karan Singh MBA ’11, Tal Snir MBA ’11, and Jaime Contreras MBA ’11 — to help build an early prototype for an app that would send out a few multiple-choice questions on material he taught during class.

When he used the app in class a few days later, Maimon saw the potential power of gathering anonymous, real-time data. First, his students voted on answers to lesson-based questions by a show of hands. Then the students weighed in anonymously on the same questions on the prototype app. Maimon saw that certain answers received more votes anonymously than by a show of hands. One reason, he posits: Students may be uncomfortable admitting they don’t understand, so they don’t ask for clarification.

“That’s when the power of real-time anonymity came in, which is fantastic because it changes the social layout,” he says. “If you’re afraid of asking a question because you think you’re the only one who doesn’t understand it, and then suddenly you remove that barrier, you see many others don’t understand as well, and it changes people’s comfort levels.”

In 2010, Maimon recruited Berte and West, and turned to mentors in MIT’s Venture Mentoring Service and Martin Trust Center for MIT Entrepreneurship for advice on marketing and financing, among other things. In 2011, they joined the Imagine K-12 startup accelerator in Palo Alto, Calif., and grew out their team.

“It was internal and external momentum,” Maimon says. “The more we saw people being excited about it from the outside, and the more we brought in team members who were excited about carrying this forward internally, the more we realized this is turning into an actual company.”

That momentum carried Socrative through to the 2012-13 academic year, when the app saw 278,000 quizzes created and shared by more than 3 million teachers and students worldwide, with more than 1,000 teacher users joining per day.

The experience of teachers

Today, other companies have released similar student-response tools. But what sets Socrative apart, Maimon says, is a core focus on K-12 teachers, which informs its simple design.

The app, for instance, has dedicated K-12 features, making it accessible to a broad audience, Maimon says. Apart from quizzes, a “space race” feature lets students compete for the most correct responses; “exit tickets” let students weigh in on what they learned — and what they’d like to learn — as they’re leaving the class.

This simplicity is especially important for teachers trying to educate dozens of students — sometimes very young — without disrupting class. “The experience of the teachers in the class became core to everything we do: making sure that it’s seamless. We knew that if we can’t make it simple enough for core users, we aren’t going to intro more teachers into our system,” Maimon says.

Today, testimonials on the company’s website — and countless online reviews from K-12 teachers of all disciplines — laud the app for its simplicity, as well as for saving time, helping students better understand material, and providing clear data analysis on student progress.

Having reached so many teachers, Socrative is expanding its mission — such as by using data to improve and personalize K-12 education. For instance, Maimon says, should some students learn by video or by lecture? What lessons should be taught by hands-on, experiential methods? Overall, how can we provide better tools for teachers to help every student based on individual needs?

“We need a body of data that is available to start deriving meaningful insights about how to tailor learning methods to students,” Maimon says. “That’s the lofty objective.”

By Rob Matheson | MIT News Office