Koch Institute faculty member Sangeeta Bhatia has been selected as one of Foreign Policy magazine’s 100 Leading Global Thinkers of 2014 for her work in developing inexpensive and noninvasive diagnostics for the early detection of colon cancer.

The annual list identifies top minds with translational ideas in politics, business, technology, the arts, and the sciences that have the potential to impact millions around the world. This year’s list, published today, has a particular focus on disruptive ideas and technologies. The honorees were recognized today at an event in Washington, D.C., where U.S. Secretary of State John Kerry was the keynote speaker.

Bhatia, the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, was specifically recognized for her work in developing accessible diagnostics for colon cancer that would enable earlier detection.

If colon cancer is detected early, while cancer cells are confined to the colon or rectum, the five-year survival rate for patients is 90 percent. However, such early detection represents only 40 percent of diagnoses, hindered in large part by expensive and invasive tests, such as colonoscopies.

Bhatia and her lab recognized this critical gap and developed nanoparticles and a simple, inexpensive, paper-strip urine test that can reveal the presence of cancer within minutes. With this diagnostic, the researchers envision that patients would be injected with nanoparticles that amplify signals from tumor proteins, naturally occurring biomarkers that are not otherwise detectable due to their location and small numbers. When tumor proteins interact with the nanoparticles, hundreds of synthetic biomarkers are released and then excreted in the urine. Similar to a home pregnancy test, Bhatia’s paper-strip system can, in mouse models, reveal the presence of cancer in minutes.

This sort of point-of-care test could represent a significant advance in bringing cancer detection to developing nations and remote locations that lack extensive medical infrastructure. In countries where more advanced diagnostics are available, synthetic biomarkers could be beneficial as an inexpensive and noninvasive alternative to traditional diagnostics.

While Bhatia’s paper-strip diagnostic has thus far only been tested in mice, she is working to commercialize this technology to accelerate its delivery to patients. She and her team are also adapting the diagnostic for other medical applications, such as fibrosis, thrombosis, and prostate cancer.

Bhatia received the 2014 Lemelson-MIT Prize in recognition for her work in cancer detection and in liver-tissue engineering. She is also a Howard Hughes Medical Institute Investigator, a member of MIT’s Institute for Medical Engineering and Science, and a member of the Broad Institute of MIT and Harvard.

By Kevin Leonardi | Koch Institute

Bose grants reward risk

November 25, 2014

Solar cells made from coal, smart nanoparticles that work with bacteria to fight cancer, and an effort to enhance human cognition by stimulating brain waves are just a few examples of the high-risk, high-impact projects funded by the first round of Prof. Amar G. Bose Research Grants.

As a scientist, Bose — a longtime member of the MIT faculty, and the founder of Bose Corporation — was driven to explore new and controversial research areas, and strongly believed in pursuing projects that many others felt were impossible. The grant program named for him embraces that philosophy, investing in the development of visionary researchers and giving them the opportunity to explore areas outside their field of expertise.

“Any truly groundbreaking research will likely be found to be risky, inappropriate, or unrealistic by many of the established practitioners in the field,” says Vanu Bose ’88, SM ’94, PhD ’99, son of Amar Bose, who died last year. “Historically, many of the innovative and groundbreaking advances in a field have come from people outside of, or on the periphery of, the particular field, since they are often able to bring a fresh perspective to the problems and ideas.”

Such projects are often less likely to be funded by traditional funding sources. The Bose grant program seeks out this type of visionary research, offering up to $500,000 over three years. The first five grant recipients were selected from more than 100 MIT faculty members who applied last year, and were evaluated according to the likelihood that the research could not be funded through traditional means; the intellectual adventurousness of the research; and the prospect of the research having a significant influence on the researcher’s career.

Targeted cancer therapy

In a project she describes as “synthetic biology meets nanotechnology,” Sangeeta Bhatia is working to create bacterial-derived “minicells” as programmable therapeutic vehicles that can be remotely triggered by “smart” nanoparticles.

Under this plan, researchers would use targeted nanomaterials that home to tumors to trigger bacterial circuits that would locally deliver toxic cancer drugs, sparing healthy tissues. In one example, Bhatia is using heat generated by gold nanorods to trigger a programmed genetic circuit that produces peptides that cause cell death.

This high-risk project, which combines two disparate fields, has the potential to transform cancer therapy, but funding such a project through traditional means would have been extremely challenging, says Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, and a member of the Koch Institute for Integrative Cancer Research.

“The Bose grant has allowed us to explore how nanotechnology may synergize with the field of synthetic biology in an unusually open-ended way,” Bhatia says. “Of course, we are ultimately interested in human health applications in cancer and liver disease, but it is too early to pick a ‘killer application’ and raise federal funding around it. We feel very fortunate for these catalytic funds at such a pivotal time, to allow us to sort out what is its disruptive potential.”

Detecting tiny particles

Janet Conrad, a professor of physics, is working on new ways to detect neutrinos — tiny elementary particles that are incredibly abundant. More than 40 billion pass through your thumbnail every second, but they almost never interact with matter.

Until now physicists have been trying to detect neutrinos by building underground detectors that are more than 20 stories tall. However, these detectors must rely on the very rare chance of detecting a neutrino produced by the sun or in the atmosphere, or from accelerators located very far away from the detector. These detectors are so big that they cannot be built near large particle accelerators that could generate many more neutrinos.

To overcome that obstacle, Conrad is working on a cyclotron — a smaller-scale particle accelerator that could be installed underground next to an existing neutrino detector. This cyclotron, which would be about 4 meters in diameter, would provide a more abundant nearby source of neutrinos, making it easier to detect them.

“Existing detectors and neutrino sources have already pushed technology to its limits,” Conrad says. “Since neutrino physicists need even higher-intensity, purer, and more versatile sources for precision measurements, we have to look outside of the box. That is what this cyclotron project is about.”

Alternative use for coal

Jeffrey Grossman, a professor in the Department of Materials Science and Engineering (DMSE), and Nicola Ferralis, a research scientist in DMSE, are exploring alternative uses for coal. Instead of burning it, they hope to use it to create a new, cheaper solar cell.

Other researchers have shown that artificial forms of carbon, such as nanotubes and graphene, can be used to build efficient solar cells. Using such cells, you could power a 100-watt light bulb for one year using only 2 grams of carbon, compared with the 350 kilograms that would be needed to power the light bulb by burning coal.

However, these types of carbon materials suffer from the high cost of manufacturing and processing, which makes them more expensive than traditional silicon-based solar cells. The researchers hope to address that drawback by creating solar cells that use natural materials such as coal, tar, bitumen, or kerogen as the photoactive material.

Using these materials could enable the manufacture of solar cells that are even cheaper than silicon cells. In this project, Grossman and Ferralis plan to develop a prototype coal photovoltaic, an effort they describe as “far too risky” for traditional funding sources to consider.

“Even the current state-of-the-art materials research and the traditional funding venues have overlooked the incredible potential of using natural carbonaceous materials (i.e., coal, oil, kerogen) for renewable energy applications, focusing instead solely on artificial carbon materials,” the researchers wrote in their grant proposal.

Brain stimulation

Earl Miller, the Picower Professor of Neuroscience, is investigating how the harmonization of the brain’s rhythms, or brain waves, contributes to consciousness. Brain waves were first recorded using EEG more than 100 years ago, but their role in brain function has been largely ignored, Miller says. Different brain states correlate with certain frequencies of brain waves, but no one knows why.

Miller’s lab has pioneered multiple-electrode recording techniques that allow simultaneous study of hundreds of neurons. Using this approach, his lab has linked brain-wave oscillations with different types of mental activity. Now, he plans to take the next step: manipulating brain communication by artificially enhancing brain rhythms using transcranial electrical stimulation (TES), a noninvasive form of electrical stimulation to the scalp.

“The brain seems to hum to itself, using rhythms and harmony for communication. This humming helps different brain networks talk to one another,” Miller says. “We hope to use TES to boost the humming in a way that will improve brain communication.” 

This could help boost normal cognition by improving focus and memory and may also offer new ways to treat diseases such as autism, ADHD, and schizophrenia, which some neuroscientists suspect may result from problems in communication between different parts of the brain.

Better cell sorting

Joel Voldman, a professor of electrical engineering and computer science, is working on new ways to separate different types of cells based on their inherent physical properties. Most cell-sorting methods, such as flow cytometry, require labeling cells with fluorescent tags pegged to certain molecules found inside the cells.

Sorting cells by properties such as size, shape, or mechanical, electrical, or optical properties offers a way to avoid labeling cells. Voldman has previously developed ways to measure intrinsic properties such as electrical polarizability of cells as they flow through a microfluidic device. In his Bose-funded research project, he plans to design chips that can perform multiple measurements on cells as they flow through a single channel, using computational microscopy — a technique that can track thousands of individual cells across a 1-centimeter area.

“I want to learn which combinations of physical properties are best able to distinguish different sets of cells, so that I can think about implementing systems that use only physical properties as the basis for separation,” Voldman says. “Such systems could analyze cells very quickly, as they would need only minimal sample preparation.”

He plans to begin by measuring a set of cell lines to help determine which combinations of features are most useful for distinguishing different cell types. Eventually, he envisions this project could lead to small tabletop devices that could be used to monitor the progression of disease by analyzing patients’ blood samples.

At a reception honoring the grant recipients tonight, the awardees will present their research projects to MIT President L. Rafael Reif and other invited guests. Faculty and senior research scientists interested in applying for future grants are invited to submit proposals in response to a call for proposals that is issued each year. 

By Anne Trafton | MIT News Office

National Institutes of Health Director Francis Collins yesterday urged an MIT audience to “reflect on what our role is as scientists and citizens of the world.”

“What we’re engaged in is a noble enterprise,” Collins told attendees at the Karl Taylor Compton Lecture, who filled Room 10-250. “It is an opportunity to alleviate suffering and reach out to those who need help.”

This is all the more important in the face of the current Ebola outbreak in West Africa, which has claimed nearly 5,000 lives and is expected to take many more, Collins said. He noted that the NIH has been supporting the search for Ebola vaccines since the mid-1990s, and now has two candidates poised to enter Phase II clinical trials in December. “I wish we were one or two years ahead of where we are now,” he added.

In what was undoubtedly the first Compton Lecture with a musical conclusion, Collins then summoned Pardis Sabeti, a Broad Institute researcher, guitarist Bob Katsiaficas, and the MIT Logarhythms a cappella group to help him lead the audience in performing a song, “One Truth,” which Sabeti and Katsiaficas wrote after the deaths of three of Sabeti’s colleagues in Sierra Leone who contracted Ebola last summer.

Striking a balance

During his lecture, Collins also acknowledged the budget limitations that have forced his agency to cut back on its funding of medical research. That only makes it more difficult for the NIH to achieve the right balance between its two missions: supporting basic scientific research and applying new knowledge to enhance human health, Collins said.

“We talk about that every day at NIH,” he said. “I wish we had more resources so we could do more of both.”

Collins noted that MIT received $103 million in NIH funding in fiscal year 2014 and highlighted some of the projects supported by that money. Linda Griffith, a professor in MIT’s biological engineering and mechanical engineering departments, is working on a “liver on a chip” — a small device designed to mimic the three-dimensional architecture of the human liver, allowing researchers to test potential drugs before they go into clinical trials. One version of the chip also includes breast cancer cells, enabling an investigation of what happens when cancer metastasizes to the liver.

Projects like this could help translate the vast amount of information scientists have learned about the molecular basis of disease into treatments for patients. Scientists now understand the causes of nearly 5,500 diseases, but effective therapies exist for only about 500 of those, Collins noted. “There’s a huge gap between what we know and what we’re able to do,” he said.

Devices such as the liver on a chip could help close that gap by reducing the time it takes to get a potential drug from the discovery process to approval by the U.S. Food and Drug Administration — a process that currently takes an average of 14 years.

“This kind of technology is enormously promising for understanding biology, and also to speed up the process of identifying what is a safe and effective drug,” Collins says.

Several MIT researchers were also among the recipients of the recently announced NIH Brain Initiative grants. Six of the 58 grants went to MIT, more than any other institution. At this early stage, most of the projects are dedicated to developing new technologies that will eventually help researchers understand how the brain’s 86 billion neurons communicate with each other to perform functions such as forming memories, processing sensory information, and initiating movement.

“It’s an audacious idea that we might be able to understand how circuits in the human brain do the amazing things they do,” Collins said.

A louder voice

Asked how scientists can help to persuade government officials and the public that scientific research deserves more resources, Collins said that all scientists should be ready to explain their work to anyone who asks about it.

“The job we all have is to be prepared at any moment to explain what we do and why it matters,” he said. “I don’t think the science community has a voice that has been heard as loudly as it should in terms of the importance of what we do.”

He also pointed out some achievements of health research over the past several decades. Over the past 60 years, U.S. deaths from cardiovascular disease have dropped 70 percent, while deaths from cancer are now falling by about 1 percent a year, a modest but hard-fought advance. Furthermore, patients diagnosed with HIV can now expect to live a full lifespan; 30 years ago, the diagnosis was considered a death sentence.

“We need to be tireless in making people aware of why this is a very important investment in our nation,” Collins said.

By Anne Trafton | MIT News Office

Francis S. Collins, director of the National Institutes of Health (NIH), will deliver the fall 2014 Compton Lecture, “Exceptional Opportunities in Biomedical Research,” at 3:30 p.m. on Tuesday, Oct. 28, in Room 10-250. All are welcome; no tickets are required.

Collins is a physician-geneticist who became the 16th director of the NIH, the leading international supporter of biomedical research, in 2009. From 1993–2008, he served as director of the National Human Genome Research Institute (NHGRI) at the NIH. His leadership at the NHGRI guided the efforts that led to the completion of the Human Genome Project (HGP), a collaborative, international research program that mapped and sequenced all the genes that make up human DNA. The work was completed April 2003, two years ahead of its original schedule.

In his own research laboratory, Collins achieved additional success by uncovering the genes associated with type 2 diabetes, neurofibromatosis, Huntington’s disease, cystic fibrosis, and Hutchinson-Gilford progeria syndrome.

A former atheist and agnostic, Collins turned to Christianity in his twenties. He explored the interface of science and faith in the New York Times best-selling book, “The Language of God: A Scientist Presents Evidence for Belief” (Free Press, 2006). He is also the author of “The Language of Life: DNA and the Revolution in Personalized Medicine” (HarperCollins, 2010). He holds a PhD in physical chemistry from Yale University and an MD from the University of North Carolina. In 2007, Collins was honored for his contributions to genetic research with the Presidential Medal of Freedom and in 2009, he received the National Medal of Science. 

The Karl Taylor Compton Lecture Series was established in 1957 to honor the late Karl Taylor Compton, who served as president of MIT from 1930 to 1948 and as chairman of the Corporation from 1948 to 1954. The purpose of the lectureship is to give the MIT community direct contact with the important ideas of our times and with people who have contributed much to modern thought.

The series is sponsored by the Office of the President. 

By MIT Institute Events

The millions of people worldwide who suffer from the painful bladder disease known as interstitial cystitis (IC) may soon have a better, long-term treatment option, thanks to a controlled-release, implantable device invented by MIT professor Michael Cima and other researchers.

In the mid-2000s, a urologist at Boston Children’s Hospital contacted Cima — at the behest of Institute Professor Robert Langer — with a plea: Could he develop an alternative treatment for IC? Treating the debilitating disease — which causes painful and frequent urination that can interrupt daily life — currently requires infusing the drug lidocaine into a patient’s bladder through a catheter. This provides temporary relief and must be repeated frequently.

“You hear that and you say, ‘There has to be a better way,’” says Cima, the David H. Koch Professor of Engineering.

Rising to the challenge, Cima and engineering student Heejin Lee SM ’04, PhD ’09 invented a solution: a pretzel-shaped silicone tube that could be inserted into the bladder, slowly releasing lidocaine over two weeks. Equipped with shape-memory wire, the tube could be straightened to fit into a catheter and spring back into its pretzel shape in the bladder, preventing it from being expelled during urination.

Since 2009, the platform — which was detailed in a 2010 issue of the Journal of Controlled Release — has been developed to carry lidocaine and tested in clinical trials by Taris Biomedical, co-founded by Cima and Langer, a longtime collaborator and entrepreneur.

Last month, pharmaceutical giant Allergan bought the worldwide rights to that specific device, called LiRIS (for lidocaine-releasing intravesical system), for $69 million up front and what could total more than $600 million in milestone payments. Allergan is prepping for phase-three clinical trials for LiRIS, which can deliver 400 milligrams of lidocaine to patients. (Because the device stays in the bladder so long, it also allows for smaller doses, reducing adverse reactions.)

Although future progress now depends on Allergan, Cima hopes to see LiRIS used commercially in a couple of years. But Taris now plans to tailor the platform device to carry other drugs into the bladder to treat various diseases, including bladder cancer. “Urology hasn’t really gotten the benefit of improvement in the biotech revolution. This type of technology can revolutionize how we do drug therapy in urology,” says Cima, who serves on Taris’ board of directors.

Taris taking shape

LiRIS started as Lee’s PhD thesis under the tutelage of Cima and with a grant from the MIT Deshpande Center for Technological Innovation, which allowed the two researchers, along with several MIT graduate students, to test much smaller versions of the device in animals.

“The Deshpande funding was an absolutely critical element in getting the data necessary to raise capital for Taris,” Cima says.

Indeed, collecting clinical data is a major challenge in spinning biotechnology out of the lab, notes Cima, who has founded four other companies in his time at MIT — MicroChips Inc., Springleaf Therapeutics, Entra Pharmaceuticals, and T2 Biosystems. “So if it hadn’t been for the Deshpande-funded study, no one would have believed us,” Cima adds.

In the MIT study, the researchers developed a prototype device by using a laser to cut a hole in a silicone tube to add drugs. “Right when we put it in, it just came right out,” Cima says, laughing. “I remember Heejin came into my office thinking his thesis was about to go out the window. But I said, ‘If we can solve this problem, that’s an invention, because the obvious solution doesn’t work.’” 

Heejin then redesigned the device as a pretzel-shaped structure by incorporating a superelastic wire made from a special nitinol alloy. This structure is threaded into a catheter, and inserted into the bladder. When expelled from the catheter, the device returns to a pretzel shape and floats freely.

The researchers found that the pretzel shape — still used in today’s devices — was critical for retention in the bladder, as it prevents the device from simple expulsion through the urethra when the bladder contracts. With this shape, as the detrusor muscles contract, the two loops overlap and the device stiffens, rendering it unable to unfold or enter the urethra.

The team was able to slowly release drugs over a two-week period — typically long enough to treat an IC flare-up — and the device could then be removed by common cystoscopy procedures. Moreover, the researchers proved that drugs injected slowly into the bladder for so long could actually be absorbed.  

Thanks to the data gathered from the study, Cima and Langer were able to launch Taris, with Lee as chief scientist, with $15 million in funding to enter phase-one clinical trials. (Taris would go on to earn $30 million in subsequent funding rounds.)

“It was a big unmet need,” Langer says of his decision to co-found Taris; he now serves on the company’s board of directors. “Once Michael and some of the students had done the work, collected the data to determine it was feasible, I thought it was something that could make a big impact.”

Surprise findings

Taris’ first trial involved implanting an empty device (with no drugs) inside volunteers to test comfort levels. Half of the volunteers were involved in a mock procedure, where no device was implanted; the other half had the device implanted. “Each night for a couple weeks, a nurse called and asked about every ache and pain,” Cima says. After two weeks, there were none.

But the company’s clinical trials, from 2011 to 2012, delivered surprising findings that, Cima says, drew Allergan to invest in and eventually buy the technology.

Taris tested the device on IC patients, many of whom also had lesions called Hunner’s lesions, which affect about 10 to 15 percent of IC sufferers. Usually, doctors cauterize these lesions (which don’t disappear on their own) while patients are under anesthesia in an operating room. But the resulting scarring sometimes leads to patients losing some bladder function.

“Much to our surprise, in our trials, the lesions in those using LiRIS disappeared after two weeks” in five out of six patients, Cima says.

Another surprise was that follow-up meetings suggested reduced pain even several months following removal of the device. Results of both trials were published in 2012 in the journal Science Translational Medicine. (Last year, Taris began an ongoing focus study specifically on patients with Hunner’s lesions.)

“Pain is a subjective outcome,” Cima says, “but the disappearance of the Hunner’s lesions was a purely objective outcome. That objective result, I believe, is one important factor that Allegan decided to acquire the product. Taris itself had also become a leading expert in interstitial cystitis. So that helped too.”

With the Allergan acquisition funds, Taris will further develop the device to deliver drugs for other bladder diseases, including chemotherapy for bladder cancer — whose high recurrence rate is due, in part, to difficulties delivering drugs in a sustained way. Last year, Taris entered a research collaboration with AstraZeneca to develop novel treatments for bladder cancer.

“This device is a platform,” Cima says. “Whether it’s bladder cancer, overactive or underactive bladder — any of these indications where you might want to deliver drugs right to the bladder — it can do that.”

A member of the MIT Koch Institute, Cima is also working on other drug-delivery projects, such as intraperitoneal chemotherapy delivery to treat ovarian cancer, funded in part by the Bridge Project.

By Rob Matheson | MIT News Office

Given a choice, most patients would prefer to take a drug orally instead of getting an injection. Unfortunately, many drugs, especially those made from large proteins, cannot be given as a pill because they get broken down in the stomach before they can be absorbed.

To help overcome that obstacle, researchers at MIT and Massachusetts General Hospital (MGH) have devised a novel drug capsule coated with tiny needles that can inject drugs directly into the lining of the stomach after the capsule is swallowed. In animal studies, the team found that the capsule delivered insulin more efficiently than injection under the skin, and there were no harmful side effects as the capsule passed through the digestive system.

“This could be a way that the patient can circumvent the need to have an infusion or subcutaneous administration of a drug,” says Giovanni Traverso, a research fellow at MIT’s Koch Institute for Integrative Cancer Research, a gastroenterologist at MGH, and one of the lead authors of the paper, which appears in the Journal of Pharmaceutical Sciences.

Although the researchers tested their capsule with insulin, they anticipate that it would be most useful for delivering biopharmaceuticals such as antibodies, which are used to treat cancer and autoimmune disorders like arthritis and Crohn’s disease. This class of drugs, known as “biologics,” also includes vaccines, recombinant DNA, and RNA.

“The large size of these biologic drugs makes them nonabsorbable. And before they even would be absorbed, they’re degraded in your GI tract by acids and enzymes that just eat up the molecules and make them inactive,” says Carl Schoellhammer, a graduate student in chemical engineering and a lead author of the paper.

Safe and effective delivery

Scientists have tried designing microparticles and nanoparticles that can deliver biologics, but such particles are expensive to produce and require a new version to be engineered for each drug.

Schoellhammer, Traverso, and their colleagues set out to design a capsule that would serve as a platform for the delivery of a wide range of therapeutics, prevent degradation of the drugs, and inject the payload directly into the lining of the GI tract. Their prototype acrylic capsule, 2 centimeters long and 1 centimeter in diameter, includes a reservoir for the drug and is coated with hollow, stainless steel needles about 5 millimeters long.

Previous studies of accidental ingestion of sharp objects in human patients have suggested that it could be safe to swallow a capsule coated with short needles. Because there are no pain receptors in the GI tract, patients would not feel any pain from the drug injection.

To test whether this type of capsule could allow safe and effective drug delivery, the researchers tested it in pigs, with insulin as the drug payload. It took more than a week for the capsules to move through the entire digestive tract, and the researchers found no traces of tissue damage, supporting the potential safety of this novel approach.

They also found that the microneedles successfully injected insulin into the lining of the stomach, small intestine, and colon, causing the animals’ blood glucose levels to drop. This reduction in blood glucose was faster and larger than the drop seen when the same amount of insulin was given by subcutaneous injection.

“The kinetics are much better, and much faster-onset, than those seen with traditional under-the-skin administration,” Traverso says. “For molecules that are particularly difficult to absorb, this would be a way of actually administering them at much higher efficiency.”

“This is a very interesting approach,” says Samir Mitragotri, a professor of chemical engineering at the University of California at Santa Barbara who was not involved in the research. “Oral delivery of drugs is a major challenge, especially for protein drugs. There is tremendous motivation on various fronts for finding other ways to deliver drugs without using the standard needle and syringe.”

Further optimization

This approach could also be used to administer vaccines that normally have to be injected, the researchers say.

The team now plans to modify the capsule so that peristalsis, or contractions of the digestive tract, would slowly squeeze the drug out of the capsule as it travels through the tract. They are also working on capsules with needles made of degradable polymers and sugar that would break off and become embedded in the gut lining, where they would slowly disintegrate and release the drug. This would further minimize any safety concern.

Avi Schroeder, a former Koch Institute postdoc, is also a lead author of the paper. The senior authors are Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute, the Institute for Medical Engineering and Science (IMES), and the Department of Chemical Engineering; Daniel Blankschtein, the Herman P. Meissner Professor of Chemical Engineering; and Daniel Anderson, the Samuel A. Goldblith Associate Professor of Chemical Engineering and a member of the Koch Institute and IMES.

The research was funded by the National Institutes of Health.

By Anne Trafton | MIT News Office

The MIT Media Lab this week launched a wellness initiative designed to spark innovation in the area of health and wellbeing, and to promote healthier workplace and lifestyle behaviors.  

With support from the Robert Wood Johnson Foundation (RWJF), which is providing a $1 million grant, the new initiative will address the role of technology in shaping our health, and explore new approaches and solutions to wellbeing. The program is built around education and student mentoring; prototyping tools and technologies that support physical, mental, social, and emotional wellbeing; and community initiatives that will originate at the Media Lab, but be designed to scale.

The program begins with the fall course “Tools for Well Being,” followed by “Health Change Lab” in the spring. In addition to concept and technology development, these courses will feature seminars by noted experts who will address a wide range of topics related to wellness. These talks will be open to the public, and made available online. Speakers will include Walter Willett, a physician and noted nutrition researcher; Chuck Czeisler, a physician and sleep expert; Ben Sawyer, a game developer for health applications; Matthew Nock, an expert in suicide prevention; Dinesh John, a researcher on health sciences and workplace activity; Lisa Mosconi, a neuroscientist studying the prevention of Alzheimer’s disease; and Martin Seligman, a founder of the field of positive psychology. More information about the courses, speakers, and presentation topics and dates can be found at: http://wellbeing.media.mit.edu.

The RWJF grant will also support five graduate-level research fellows from the Program in Media Arts and Sciences who will be part of a year-long training program. The funding will enable each fellow to design, build, and deploy novel tools to promote wellbeing and health behavior change at the Media Lab, and then at scale.

One of the significant ways that this program will impact Media Lab culture is in the review of all thesis proposals submitted by students in media arts and sciences. Media Lab faculty recently added a new requirement that all proposals consider the impact of the work on human wellbeing.

Other Media Lab-wide aspects of the initiative include:

  • A monthly health challenge that would engage the entire lab, with review and analysis of each month’s deployment to help inform the next month’s initiative.
  • Pairing students with one another — to build awareness of wellbeing as a social function, not just a perosonal goal, and to draw on people’s inclination to solve the problems of others differently than their own.

“Wellbeing is a very hard problem that has yet to be solved by psychologists, psychiatrists, neuroscientists, biologists or other experts in the scientific community,” says Rosalind Picard, a professor of media arts and sciences and one of the three principal investigators on the initiative. “It’s time to bring MIT ingenuity to the challenge.”

“RWJF is working to build a culture of health in the U.S. where all people have opportunities to make healthy choices and lead healthy lifestyles. Technology has long shaped the patterns of everyday life, and it is these patterns­ — of how we work, eat, sleep, socialize, recreate and get from place to place — that largely determine our health,” says Stephen Downs, chief technology and information officer at RWJF. “We’re excited to see the Media Lab turn its creative talents and its significant influence to the challenge of developing technologies that will make these patterns of everyday life more healthy.”

Along with Picard, the other two principal investigators on the Advancing Wellness initiative are Pattie Maes, the Alex W. Dreyfoos Professor of Media Arts and Sciences, and Kevin Slavin, an assistant professor of media arts and sciences.

PhD student Karthik Dinakar, a Reid Hoffman Fellow at the Media Lab, will co-teach the two courses with the three principal investigators. Susan Silbey, the Leon and Anne Goldberg Professor of Humanities, Sociology and Anthropology, will also create independent assessments through the year on the impact of this project.

By Alexandra Kahn | MIT Media Lab

A new technique for studying the lifecycle of the hepatitis B virus could help researchers develop a cure for the disease.

In a paper published today in the journal Proceedings of the National Academy of Sciences, Sangeeta Bhatia of MIT and Charles Rice of Rockefeller University describe using microfabricated cell cultures to sustain hepatitis B virus in human liver cells, allowing them to study immune responses and drug treatments.

Around 400 million people worldwide are infected with the hepatitis B virus (HBV); of those, one-third will go on to develop life-threatening complications, such as cirrhosis and liver cancer.

Although there is an effective HBV vaccine, only around 50 percent of people in some countries where the disease is endemic are vaccinated. A complete cure for the disease is very rare, once someone has been chronically infected.

“Once a liver cell is infected, the viral genome persists inside the nucleus, and that can reactivate later,” says Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science. “So although we have a vaccine, it’s important to find a way to study this persistent form of the virus to try to identify treatments that could efficiently clear it.”

“Finicky” hepatocytes

To develop a treatment for HBV, researchers need to be able to study infected liver cells, known as hepatocytes, so they can understand how the virus interacts with them.

But while researchers have previously been able to infect cultures of human hepatocytes with HBV, the cells’ limited lifespan has made it difficult to study the virus, says Bhatia, who is also a Howard Hughes Medical Institute investigator and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science.

“That’s because the hepatocyte — the main cell in the liver — is unstable,” she says. “It’s a very finicky cell, and when you isolate it from the liver and try to culture it under conventional conditions, it rapidly loses its repertoire of liver functions.”

So the team set out to develop a technique to keep the liver cells stable and functioning long enough to monitor their response to the virus and antiviral drugs.

They based their approach on a system they had previously developed for studying the hepatitis C virus, in which they were able to successfully infect human hepatocytes with the virus and use it to compare antiviral regimens.

The hepatocytes are first patterned onto surfaces dotted with tiny spots of collagen, and then surrounded by supportive tissue made up of stromal cells, which act as connective tissue and support the hepatocytes in carrying out their liver functions.

Two complementary systems

To apply the technique to infection with HBV, the researchers developed two complementary systems. One uses primary hepatocytes obtained from livers donated for transplant; the second uses stem cells derived from human skin samples and guided into hepatocyte-like cells, Bhatia says.

When they compared the relative merits of the two systems, they found that the primary liver cells had a stronger immune response when infected with the virus than the stem cell progeny. However, unlike the primary hepatocytes, the hepatocyte-like cells offer an unlimited supply of test cells, since the researchers can simply grow more as required, Bhatia says.

“But that being said, both systems were able to grow this persistent nuclear form [of HBV], so we think they offer complementary tools,” she says.

The paper’s lead authors are Amir Shlomai of Rockefeller University, and graduate student Vyas Ramanan and former postdoc Robert E. Schwartz, both of MIT.

To investigate whether the cell cultures could be used to test new treatments for the disease, the researchers monitored their response to two existing drugs. They found that the infected cultures responded to the drugs in the same way that liver cells inside the body are known to do. This means the systems could be used to help predict how effective new treatments will be in eradicating the virus from liver cells, Bhatia says.

Having developed the technique, the researchers now plan to begin using it to investigate new treatments for HBV. They also plan to use the model to study liver cells’ natural antiviral response in more detail, and in particular to try to understand why cells from different donors have different immune responses to the disease.

Raymond Chung, vice chief of the gastrointestinal unit at Massachusetts General Hospital, who was not involved in the research, says that despite the availability of effective vaccines, researchers have made few inroads into eliminating HBV. “While we have excellent suppressive therapies, there are no truly curative treatments, in large measure because we have been handicapped by the lack of robust cell-culture models that support HBV infection,” he says.

“The new approach described here provides one avenue by which we may more effectively study the HBV lifecycle, and in so doing identify new agents that block additional steps in that lifecycle,” he adds. “Using such an approach could bring us one step closer to a cure for HBV.”

By Helen Knight | MIT News correspondent

Seven MIT faculty members are among 204 leaders from academia, business, public affairs, the humanities and the arts elected to the American Academy of Arts and Sciences, the academy announced today.

One of the nation’s most prestigious honorary societies, the academy is also a leading center for independent policy research. Members contribute to academy publications, as well as studies of science and technology policy, energy and global security, social policy and American institutions, the humanities and culture, and education.

Those elected from MIT this year are:

  • Elazer Reuven Edelman, the Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology
  • Michael Greenstone, the 3M Professor of Environmental Economics
  • Keith Adam Nelson, a professor of chemistry
  • Paul A. Seidel, a professor of mathematics
  • Gigliola Staffilani, the Abby Rockefeller Mauzé Professor of Mathematics
  • Sherry Roxanne Turkle, the Abby Rockefeller Mauzé Professor of the Social Studies of Science and Technology
  • Robert Dirk van der Hilst, the Schlumberger Professor of Earth Sciences and head of the Department of Earth, Atmospheric and Planetary Sciences

“It is a privilege to honor these men and women for their extraordinary individual accomplishments,” Don Randel, chair of the academy’s Board of Directors, said in a statement. “The knowledge and expertise of our members give the Academy a unique capacity — and responsibility — to provide practical policy solutions to the pressing challenges of the day. We look forward to engaging our new members in this work.”

The new class will be inducted at a ceremony held on Oct. 11 at the academy’s headquarters in Cambridge.

Since its founding in 1780, the academy has elected leading “thinkers and doers” from each generation, including George Washington and Benjamin Franklin in the 18th century, Daniel Webster and Ralph Waldo Emerson in the 19th century, and Albert Einstein and Winston Churchill in the 20th century. The current membership includes more than 250 Nobel laureates and more than 60 Pulitzer Prize winners.

By News Office

The following notice was sent Thursday afternoon to individuals at MIT and Harvard Medical School by representatives of the joint Harvard-MIT Health Sciences and Technology (HST) program. Eliana Hechter was a student in HST who had been working toward an M.D. degree from Harvard.

To the Harvard Medical School, MIT, and HST Communities:

It is with great sadness that we report the untimely death of Dr. Eliana Hechter, a first-year MD student in HST. Her family notified the medical school this morning, and have not yet made definitive plans regarding services or a memorial. As information becomes available, we will share it with you. We encourage students, administration, and faculty to come together as a community to remember Eliana as a student with tremendous promise, and one who has been lost far too soon.

Losing a member of our community is always difficult and we want to remind you that there are resources here to help you with grief or stress (please see below).

David Cohen, Emery Brown, Matthew Frosch, Patty Cunningham, and Rick Mitchell

— on behalf of HST

MIT Medical’s Mental Health and Counseling Service

E23 — 3rd Floor

On weekdays: call 617-253-2916 to schedule an appointment

For more urgent issues, visit them during walk-in hours on weekday afternoons from 2–4 p.m.

For very urgent issues, call one of the numbers below; a mental health clinician is on call and available 24 hours a day, seven days a week:

Weekdays (M-Th 8 a.m.–7 p.m., F 8 a.m.–5 p.m.): 617-253-2916

Nights/weekends: 617-253-4481

Chaplains at MIT

Contact information for individual Chaplains is available online here:

http://studentlife.mit.edu/rl/mit-chaplains

MIT’s Office of the Dean for Graduate Education (ODGE)

3-132

The office provides two pamphlets, “How to help someone in distress” and the MIT Medical brochure “Caring for our community.”

See also: http://web.mit.edu/student/personal_support.html

By News Office